Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Kidney Med ; 5(6): 100641, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2310605

ABSTRACT

Rationale & Objective: Continuous kidney replacement therapy (CKRT) is the predominant form of acute kidney replacement therapy used for critically ill adult patients with acute kidney injury (AKI). Given the variability in CKRT practice, a contemporary understanding of its epidemiology is necessary to improve care delivery. Study Design: Multicenter, prospective living registry. Setting & Population: 1,106 critically ill adults with AKI requiring CKRT from December 2013 to January 2021 across 5 academic centers and 6 intensive care units. Patients with pre-existing kidney failure and those with coronavirus 2 infection were excluded. Exposure: CKRT for more than 24 hours. Outcomes: Hospital mortality, kidney recovery, and health care resource utilization. Analytical Approach: Data were collected according to preselected timepoints at intensive care unit admission and CKRT initiation and analyzed descriptively. Results: Patients' characteristics, contributors to AKI, and CKRT indications differed among centers. Mean (standard deviation) age was 59.3 (13.9) years, 39.7% of patients were women, and median [IQR] APACHE-II (acute physiologic assessment and chronic health evaluation) score was 30 [25-34]. Overall, 41.1% of patients survived to hospital discharge. Patients that died were older (mean age 61 vs. 56.8, P < 0.001), had greater comorbidity (median Charlson score 3 [1-4] vs. 2 [1-3], P < 0.001), and higher acuity of illness (median APACHE-II score 30 [25-35] vs. 29 [24-33], P = 0.003). The most common condition predisposing to AKI was sepsis (42.6%), and the most common CKRT indications were oliguria/anuria (56.2%) and fluid overload (53.9%). Standardized mortality ratios were similar among centers. Limitations: The generalizability of these results to CKRT practices in nonacademic centers or low-and middle-income countries is limited. Conclusions: In this registry, sepsis was the major contributor to AKI and fluid management was collectively the most common CKRT indication. Significant heterogeneity in patient- and CKRT-specific characteristics was found in current practice. These data highlight the need for establishing benchmarks of CKRT delivery, performance, and patient outcomes. Data from this registry could assist with the design of such studies.

2.
Case reports in nephrology and dialysis ; 13(1):1-6, 2023.
Article in English | EuropePMC | ID: covidwho-2218831

ABSTRACT

The Seraph® 100 Microbind® Affinity Blood Filter (Seraph® 100) is a hemoperfusion device designed to adsorb bacteria, viruses, and toxins when added to extracorporeal circuits. The FDA granted emergency use authorization in adults, but this device had never been utilized in children. A 17-year-old patient with asthma presented with respiratory distress due to COVID-19. His course was complicated by respiratory failure, rhabdomyolysis, and stage 3 AKI requiring initiation of continuous kidney replacement therapy (CKRT) on ICU day 3. The Seraph® 100 filter was added on ICU day 4. He was treated with 3 filters from ICU day 4 to 8. On ICU day 8, he was extubated and CKRT discontinued. He required no further kidney replacement therapy but did not have laboratory work post-discharge. In conclusion, this adolescent patient with COVID-19 and AKI requiring CKRT tolerated treatment with the Seraph® 100 Microbind® Affinity Blood Filter without significant adverse events.

3.
Clin J Am Soc Nephrol ; 16(10): 1601-1609, 2021 10.
Article in English | MEDLINE | ID: covidwho-1502239

ABSTRACT

AKI is a common complication in hospitalized and critically ill patients. Its incidence has steadily increased over the past decade. Whether transient or prolonged, AKI is an independent risk factor associated with poor short- and long-term outcomes, even if patients do not require KRT. Most patients with early AKI improve with conservative management; however, some will require dialysis for a few days, a few weeks, or even months. Approximately 10%-30% of AKI survivors may still need dialysis after hospital discharge. These patients have a higher associated risk of death, rehospitalization, recurrent AKI, and CKD, and a lower quality of life. Survivors of critical illness may also suffer from cognitive dysfunction, muscle weakness, prolonged ventilator dependence, malnutrition, infections, chronic pain, and poor wound healing. Collaboration and communication among nephrologists, primary care physicians, rehabilitation providers, physical therapists, nutritionists, nurses, pharmacists, and other members of the health care team are essential to create a holistic and patient-centric care plan for overall recovery. Integration of the patient and family members in health care decisions, and ongoing education throughout the process, are vital to improve patient well-being. From the nephrologist standpoint, assessing and promoting recovery of kidney function, and providing appropriate short- and long-term follow-up, are crucial to prevent rehospitalizations and to reduce complications. Return to baseline functional status is the ultimate goal for most patients, and dialysis independence is an important part of that goal. In this review, we seek to highlight the varying aspects and stages of recovery from AKI complicating critical illness, and propose viable strategies to promote recovery of kidney function and dialysis independence. We also emphasize the need for ongoing research and multidisciplinary collaboration to improve outcomes in this vulnerable population.


Subject(s)
Acute Kidney Injury/therapy , Kidney/physiopathology , Renal Dialysis , Acute Kidney Injury/diagnosis , Acute Kidney Injury/mortality , Acute Kidney Injury/physiopathology , Critical Illness , Humans , Recovery of Function , Renal Dialysis/adverse effects , Renal Dialysis/mortality , Risk Assessment , Risk Factors , Treatment Outcome
4.
Pediatr Res ; 91(7): 1787-1796, 2022 06.
Article in English | MEDLINE | ID: covidwho-1333900

ABSTRACT

BACKGROUND: We aimed to study the association of suspected versus confirmed infection with the novel SARS-CoV2 virus with the prevalence of acute kidney injury (AKI) in critically ill children. METHODS: Sequential point-prevalence study of children and young adults aged 7 days to 25 years admitted to intensive care units under investigation for SARS-CoV2 infection. AKI was staged in the first 14 days of enrollment using KDIGO creatinine-based staging. SARS-CoV2 positive (CONFIRMED) were compared to SUSPECTED (negative or unknown). Outcome data was censored at 28-days. RESULTS: In 331 patients of both sexes, 179 (54.1%) were CONFIRMED, 4.2% (14) died. AKI occurred in 124 (37.5%) and severe AKI occurred in 63 (19.0%). Incidence of AKI in CONFIRMED was 74/179 (41.3%) versus 50/152 (32.9%) for SUSPECTED; severe AKI occurred in 35 (19.6%) of CONFIRMED and 28 (18.4%) of SUSPECTED. Mortality was 6.2% (n = 11) in CONFIRMED, but 9.5% (n = 7) in those CONFIRMED with AKI. On multivariable analysis, only Hispanic ethnicity (relative risk 0.5, 95% CI 0.3-0.9) was associated with less AKI development among those CONFIRMED. CONCLUSIONS: AKI and severe AKI occur commonly in critically ill children with SARS-CoV2 infection, more than double the historical standard. Further investigation is needed during this continuing pandemic to describe and refine the understanding of pediatric AKI epidemiology and outcomes. TRIAL REGISTRATION: NCT01987921. IMPACT: What is the key message of the article? AKI occurs in children exposed to the novel SARS-CoV2 virus at high prevalence (~40% with some form of AKI and 20% with severe AKI). What does it add to the existing literature? Acute kidney injury (AKI) occurs commonly in adult patients with SARS-CoV2 (COVID), very little data describes the epidemiology of AKI in children exposed to the virus. What is the impact? A pediatric vaccine is not available; thus, the pandemic is not over for children. Pediatricians will need to manage significant end-organ ramifications of the novel SARS-CoV2 virus including AKI.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Child , Critical Illness , Female , Humans , Intensive Care Units , Male , RNA, Viral , Retrospective Studies , SARS-CoV-2 , Young Adult
7.
Nat Rev Nephrol ; 16(12): 747-764, 2020 12.
Article in English | MEDLINE | ID: covidwho-872710

ABSTRACT

Kidney involvement in patients with coronavirus disease 2019 (COVID-19) is common, and can range from the presence of proteinuria and haematuria to acute kidney injury (AKI) requiring renal replacement therapy (RRT; also known as kidney replacement therapy). COVID-19-associated AKI (COVID-19 AKI) is associated with high mortality and serves as an independent risk factor for all-cause in-hospital death in patients with COVID-19. The pathophysiology and mechanisms of AKI in patients with COVID-19 have not been fully elucidated and seem to be multifactorial, in keeping with the pathophysiology of AKI in other patients who are critically ill. Little is known about the prevention and management of COVID-19 AKI. The emergence of regional 'surges' in COVID-19 cases can limit hospital resources, including dialysis availability and supplies; thus, careful daily assessment of available resources is needed. In this Consensus Statement, the Acute Disease Quality Initiative provides recommendations for the diagnosis, prevention and management of COVID-19 AKI based on current literature. We also make recommendations for areas of future research, which are aimed at improving understanding of the underlying processes and improving outcomes for patients with COVID-19 AKI.


Subject(s)
Acute Kidney Injury/therapy , Acute Kidney Injury/virology , COVID-19/complications , COVID-19/therapy , Renal Replacement Therapy/methods , Acute Kidney Injury/diagnosis , Acute Kidney Injury/pathology , Anticoagulants/therapeutic use , Consensus , Humans , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL